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ABSTRACT

The organization and structure of thunderstorms determines the extent and severity of their hazards to the

general public and their consequences for the Earth system. Distinguishing vigorous convective regions that

produce heavy rain and hail from adjacent regions of stratiform clouds or overhanging anvil clouds that

produce light to no rainfall is valuable in operations and physical research. Cloud-type algorithms that par-

tition convection from stratiform regions have been developed for space-based radar, passive microwave, and

now Geostationary Operational Environmental Satellites (GOES) Advanced Baseline Imager (ABI) mul-

tispectral products. However, there are limitations for each of these products including temporal

availability, spatial coverage, and the degree to which they based on cloud microphysics. We have

developed a cloud-type algorithm for GOES Geostationary Lightning Mapper (GLM) observations that

identifies convective/nonconvective regions in thunderstorms based on signatures of interactions with

nonconvective charge structures in the lightning flash data. The GLM sensor permits a rapid (20 s)

update cycle over the combined GOES-16–GOES-17 domain across all hours of the day. Storm regions

that do not produce lightning will not be classified by our algorithm, however. The GLM cloud-type

product is intended to provide situational awareness of electrified nonconvective clouds and to com-

plement other cloud-type retrievals by providing a contemporary assessment tied to lightning physics.

We propose that a future combined ABI–GLM cloud-type algorithm would be a valuable product that

could draw from the strengths of each instrument and approach.

1. Introduction

Partitioning between convective and nonconvective

cloud regions is important for assessing storm hazards

and their effects on the environment. Multiple algorithms

have been developed to perform convective–stratiform

partitioning using precipitation radars (Awaka et al.

2007, 2016), passive microwave imagers (Anagnostou

and Kummerow 1997; Hong et al. 1999; Olson et al.

2001), and multispectral imagers such as the Advanced

Baseline Imager (ABI; Schmit et al. 2005) on the

NOAA Geostationary Observational Environmental

Satellites (GOES) (Liu et al. 2019). Each of these algo-

rithms identifies patterns in the amplitudes or gradients of

the radiance/reflectivity data that are characteristic of

convective or stratiform clouds.

Some of these patterns are based on signatures of mi-

crophysical features in convective or stratiform clouds.

For example, Awaka’s radar-based cloud-type algo-

rithms attempt to resolve the radar bright band caused

by melting precipitation in the stratiform region. Others

rely on qualitative aspects of convective and stratiform

clouds—for example, that convective clouds are tall and

textured while stratiform clouds are comparably low

and smooth. This type of classification lends itself well to

computational/statistical pattern recognition methods

including machine learning. For example, the ABI

cloud-type algorithm published by Liu et al. (2019)

uses a deep neural network (DNN) machine learning

scheme to determine which combination of visible andCorresponding author: Michael Peterson, mpeterson@lanl.gov
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infrared spectral parameters optimizes the convective–

stratiform classification problem.

While the Liu et al. (2019) algorithm performs rea-

sonably well on the validation data, it is not clear why

this specific combination of spectral parameters is best

from a physics perspective, or whether it is applicable

for all regions and storm types. The study area en-

compassed the East Coast of the United States from

South Carolina to Delaware, and the two depicted ca-

ses occurred in the same 1800–1830 UTC window on

different days. The study did not include analyses of

mature mesoscale convective systems (MCSs) over the

Great Plains in North America or the La Plata Basin in

South America—both within the ABI field of view

(FOV). These storms produce some of the largest ac-

tive stratiform regions on Earth and tend to occur late

in the day (and overnight), which may cause issues in

how the Liu et al. (2019) algorithm interprets radiances

from the visible ABI bands.

Both physics-based and machine learning algo-

rithms have merit in research and applications, but

they differ in the type of perspective and depth of

insight into the inner-workings of convective systems

that they provide. For this reason, it is advantageous

to combine multiple approaches from multiple in-

struments to produce a comprehensive cloud-type

assessment.

The Geostationary Lightning Mapper (GLM) may

be able to contribute its own, independent, assessment

of thunderstorm cloud types based on lightning physics.

While the common perception of lightning is that it is a

primarily vertical process—either between different

charge layers in the cloud, or between the cloud and the

ground—the vertical extent of normal lightning is

limited to the height of the tropopause (10–20 km de-

pending on the location and season). In the horizontal

direction, however, lightning propagation is only lim-

ited by the extent of the electrified cloud that it can

access and the favorability of the thunderstorm charge

structure for lateral development.

Laterally extensive lightning is most common outside

of the convective core in overhanging anvils (Kuhlman

et al. 2009;Weiss et al. 2012) and precipitating stratiform

regions (Carey et al. 2005) where charged particles ad-

vected from the convective core collect into horizontally

expansive layers. These charge layers can be enhanced

by local in situ charging mechanisms (Ely et al. 2008;

Lang and Rutledge 2008), and the electric fields that

they establish are favorable for lateral development

(Coleman et al. 2008).

Overhanging anvil clouds and stratiform clouds are

generally distinguished in the atmospheric electricity

literature due to the considerable differences in their

vertical precipitation and charge structures. Overhanging

anvils often have one primary charge layer with opposite-

polarity screening layers along the upper and lower cloud

boundaries (Marshall et al. 1989). Stratiform clouds, on

the other hand, can have as many as six expansive layers

(up to 100 km across) stacked on top of one another with

alternating polarities between layers (Krehbiel 1986;

Marshall and Rust 1993; Stolzenburg et al. 1994; Lang

et al. 2004; Marshall et al. 2009).

However, despite these differences in charge struc-

ture, both of these nonconvective cloud types are

known to produce similar types of primarily horizontal

lightning flashes. ‘‘Anvil crawlers,’’ ‘‘spider lightning,’’

and ‘‘sheet lightning’’ are common names given to

flashes that propagate laterally through anvil and

stratiform clouds. These propagating flashes can be

accurately mapped in three-dimensions over regional-

scale domains by ground-based Lightning Mapping

Arrays (LMA; Rison et al. 1999) or mapped in two-

dimensions over very large domains by space-based

lightning imagers. The GLM (Goodman et al. 2013;

Rudlosky et al. 2019) on the R series of GOES satel-

lites can reveal the lateral development of lightning

anywhere within its staring hemispheric-scale FOV.

This study introduces GLM to the problem of cloud-

type classification. We aim to differentiate between

electrified convective and nonconvective clouds based

on the prevalence of propagating flashes that pass

through them.A lightning-based cloud-type algorithm is

constructed that partitions between electrified convective

and nonconvective (anvil or stratiform) clouds. This al-

gorithm is then used to construct a GLM anvil/stratiform

cloud probability gridded product. GLM enables real-

time product generation with a rapid update cycle (up to

every 20 s) across the combinedGOES-16 andGOES-17

domain that stretches fromNewZealand eastward nearly

to the west coast of Africa during the day and at night.

Our lightning-based cloud-type product could thus pro-

vide situational awareness across a broad domain and

complement the existing cloud-type products.

2. Data and methodology

Our core hypothesis is that a disproportionate fraction

of the high-speed (#2 ms) optical lightning pulses illu-

minating nonconvective clouds are produced by hori-

zontally propagating flashes. This would be due to not

only low flash rates and a preference for lateral devel-

opment outside of the convective core but also the fact

that propagating flashes generate more pulses per flash

than normal lightning (Peterson 2019a). We test the

validity of this hypothesis by computing the prevalence

of propagating flashes that pass through convective and
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anvil/stratiform cloud regions. This requires two inde-

pendent types of orbital measurements: optical lightning

data fromNASA andNOAA lightning imagers are used

to identify propagating flashes by mapping their lateral

extents, while precipitation radar data are used to verify

the cloud type.

a. Lightning imager measurements

The two lightning imagers that we consider are the

Lightning Imaging Sensor (LIS; Christian et al. 2000)

on the Tropical Rainfall Measuring Mission (TRMM;

Kummerow et al. 1998) satellite and GLM on the

GOES-16 satellite (Goodman et al. 2013). TRMM

operated for 17 years from late 1997 until mid-2015, but

we will only be considering observations taken be-

tween January 1998 and March 2014. We limit the

TRMM record to ensure that the instruments in its

meteorological sensor package were operating simul-

taneously under nominal conditions. The TRMM sat-

ellite spent its life in low Earth orbit (LEO) providing

1–2 min snapshots of lightning activity and thunder-

storm precipitation structure across the tropics (up to

368 latitude) over a combined swath for all instruments

that was 215 km across. Individual instruments (such as

LIS) had considerably larger FOVs, but only this nar-

row swath had measurements from all TRMM sensors

(Kummerow et al. 1998).

The GOES-16 satellite, meanwhile, was launched in

November 2016 and currently resides in the GOES-East

position (75.28W). Its geostationary orbit at nearly

35 800 km altitude enables GOES-16 to loiter over the

same satellite subpoint location. This orbit allows its

instruments—including GLM—to continuously stare at

the same geographic region for the duration of its mis-

sion. The GOES-16GLM FOV covers the entire North

and South American continents to 548N/S latitude.

LIS and GLM measure lightning by recording rapid

changes in cloud-top radiance over a narrow band

around the 777.4 nm oxygen emission line triplet (Benz

et al. 2019). Individual pixels that light up above the

background level during one 2-ms frame are termed

‘‘events.’’ Clusters of events that light up all at once

during the same 2-ms frame and represent the illumi-

nated potion of the thundercloud are known as ‘‘groups.’’

Groups that occur close to one another in space and time

are then clustered into lightning ‘‘flashes.’’ Flash clus-

tering is performed in geolocated space using a weighted

Euclidian distance (WED) model described in Mach

et al. (2007) for LIS andGoodman et al. (2010) for GLM.

Weuse a preliminaryGLM ‘‘science’’ dataset (Peterson

2019a, 2020) that has been produced for the first cal-

endar year of provisional GOES-16 GLM measure-

ments (January to December 2018). This postprocessed

dataset reclusters complex flashes that are artificially

split by the GLM ground system and constructs ‘‘series’’

features that exist between the group and flash levels

(Peterson and Rudlosky 2019). The parent–child rela-

tionships between these features are useful for exam-

ining how the trigger times, centroid positions, and

reported energies of groups/events characterize flashes

(Peterson and Liu 2013); for describing how optical

lightning emissions interact with the cloud medium

(Peterson et al. 2017b; Peterson 2019b); and formapping

the lateral flash development over time (Peterson et al.

2017a, 2018). This ‘‘reclustered’’ dataset is produced

routinely with a typical latency of 3–5 min from real

time—on par with ABI CONUS scans.

While most flashes repeatedly illuminate the same

cloud region, propagating flashes develop horizontally

over many kilometers between first light and the final

optical pulse. Propagating flashes typically are defined

as having groups that are separated by a distance greater

than the characteristic radius of the flash (the size of the

flash footprint if it illuminated the same cloud-top area

but were perfectly circular) (Peterson et al. 2017a). This

definition eliminates the boundary cases that may or

may not have horizontal structure, but it alone is not

sufficient for cloud-type identification. Lateral devel-

opment is not entirely lacking in convective regions, but

due to limited thunderstorm sizes and thick clouds

preventing dim optical pulses from being resolved,

convective propagating flashes tend to be small. Thus,

we impose an additional minimum size restriction that

propagating flashes must be at least 20 km for LIS or

50 km for GLM to be considered in this study. These

thresholds are arbitrary but chosen after extensive case

analysis to balance the probability of detection with the

false alarm rate. The GLM threshold is higher because

its clustering algorithm delineates flashes from the sep-

aration of events rather than group centroids, causing

nearby convective flashes to be grouped into single

‘‘propagating’’ flashes, which is undesirable for assessing

cloud types.

Rather than examining individual propagating flashes

or the proportions of propagating flashes in larger

thunderstorms, we leverage the flash extent density

(FED) concept to produce grids that show how often

each pixel is illuminated by propagating flashes. This

will allow us to generate maps that quantify the like-

lihood that different regions in a thunderstorm are

convective or anvil/stratiform clouds. GLM FEDs

count the number of unique flashes that illuminate a

given pixel on the grid. We modify this formulation by

weighting each flash according to the number of

groups that it contains. This group-weighted FED

(GFED) ensures that propagating flashes having low
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flash rates but very high group counts stand out in

contrast to the ubiquitous convective lightning.

b. Precipitation Radar measurements and cloud-type
retrieval

TRMM and its successor Global Precipitation

Measurement (GPM;Hou et al. 2014)Core Observatory

satellite feature Precipitation Radars (PRs) in their

scientific payloads. The TRMM PR and GPM’s Dual-

Frequency PR (DPR) record three-dimensional re-

flectivity maps of the rainclouds below each satellite. An

example PR reflectivity cross section through the con-

vective line (left) and into the stratiform region (right)

of an MCS is shown in Fig. 1a alongside TRMMVisible

and Infrared Scanner (VIRS) infrared brightness tem-

peratures. PR pixels represent a cloud volume that is

;4 km across and 0.25 km deep, providing a detailed

view of the precipitation structure of the thunderstorm

(albeit within a limited FOV). For both TRMM and

GPM, the PR/DPR had the narrowest swath of the

meteorological instruments and thus limited the extent

of the multi-instrument measurement domain.

Retrieval algorithms have been developed to partition

PR/DPR pixels into convective, stratiform, and ‘‘other’’

categories (Awaka et al. 2007, 2016). Figure 1b shows an

example cloud-type map from the TRMM 2A23 algo-

rithm (Awaka et al. 1997). PR pixels with an apparent

radar bright band (at ;4 km altitude in the reflectivity

cross section in Fig. 1a) are classified as stratiform in

Fig. 1b. Other is a catchall category that identifies pixels

that lack the prominent features used for convective–

stratiform partitioning or that lack sufficiently strong

radar echoes for the PR to resolve.

A two-step process is used to identify the PR/DPR

pixels that correspond to LIS and GLM lightning events

within the combined lightning imager and PR/DPR

domains. We first regrid the radar pixels to emulate the

LIS/GLM pixel sizes using a mathematical mode func-

tion (i.e., which PR/DPR cloud type contributes the

most matching pixels from the original instrument grid)

to choose a prevailing cloud type for the new pixel. We

then locate the PR/DPR pixel in the new grid that cor-

responds to each LIS/GLM event using a nearest-

neighbor algorithm. For TRMM PR/LIS collocations,

we consider all lightning events within the same orbit as

the PR data. For GPM DPR/GLM collocations, we

consider all lightning within a 15-min window sur-

rounding the DPR time stamp reported for each scan.

This window is chosen to increase the sample size of

matching events and maximize GLM detection in low-

flash-rate stratiform regions.

For every unique LIS/GLM pixel illuminated during

the orbit/time window, we compute the total GFED and

the GFED from just propagating flashes by increment-

ing each pixel touched by a flash by the number of

groups in that flash. We then take the ratio of these two

grids to compute the percent of the GFED that is con-

tributed by propagating flashes in each pixel. TheGFED

FIG. 1. An example TRMM overpass of a thunderstorm with

lightning in the convective and stratiform regions. (a) PR re-

flectivity and VIRS infrared brightness temperature zonal cross

section through the center of the thunderstorm (horizontal line

in later panels). (b) TRMM PR 2A23 algorithm cloud types

across the storm. (c) The percent of the LIS group weighed flash

extent density (GFED) provided by propagating flashes. PR

stratiform pixels are almost exclusively illuminated by hori-

zontal lightning.
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percent propagating for the thunderstorm in Figs. 1a

and 1b is shown in Fig. 1c. Grid points designated as

stratiform by the TRMM PR have propagating GFED

fractions close to 100%, while convective regions

have lower propagating flash fractions. We collect

the PR/DPR classifications (Fig. 1b) and LIS/GLM

propagating GFED fractions (Fig. 1c) for pixels illu-

minated by lightning into separate databases for TRMM

and GPM/GLM.

3. Results

The databases of coincident lightning imager and

precipitation radar measurements described in section 2

are used to compute the probability that a given pixel is

an anvil/stratiform cloud rather than a convective

cloud based on how often it is illuminated by propa-

gating lightning. The 16-yr TRMM database contains

30 million collocated LIS/PR pixels, while the 4-month

GOES-16/GPM database contains only 84 000 com-

mon GLM/DPR pixels. Though GLM records 20 times

more lightning per year than LIS observed over its

entire mission (due to its geostationary orbit), GPM is

still a LEO satellite and its infrequent narrow snap-

shots restrict the accumulation rate of coincident pixels

over the common measurement domain of the two

satellites.

Figure 2 shows the probabilities that a given pixel is an

anvil/stratiform cloud by comparing 1) the propagating

TRMM LIS GFED fraction with the TRMM PR cloud

type (Fig. 2a) and 2) theGOES-16GLMGFED fraction

with the GPM DPR cloud type (Fig. 2b). Probabilities

are calculated by finding all matching pixels with a cer-

tain GFED value (x axis; bin size is 1%) and then

computing the percent of the sample where the radar

reports a nonconvective cloud type. Both probability

curves increase with GFED propagating fraction, but

the starting and ending probabilities differ between

TRMM and GOES-16/GPM. This is likely due to dif-

ferences in the lightning imagers rather than the pre-

cipitation radars since LIS and GLM feature different

sensitivities, pixel sizes, and viewing geometries (e.g.,

GLMmust contend with the curvature of Earth near the

edge of its FOV). The GLM (LIS) event-based flash

clustering (group-centroid-based clustering) and the

resulting 50 km (20 km) threshold value also contribute

to these differences. Furthermore, the relatively small

sample size ofGLM/GPMcollocations is responsible for

the increased noise in Fig. 2b.

The probability curves in Fig. 2 can be used to con-

vert the GFED gridded product in Fig. 1c into proba-

bilistic cloud-type maps. We fit a Gaussian curve to the

data in Fig. 2b for GLM and use this regression to

calculate anvil/stratiform cloud probabilities. Figure 3

shows GOES-16 ABI channel 14 (11.2 mm) infrared

brightness temperatures (top) and GLM anvil/stratiform

cloud probabilities (bottom) at two points during a large

frontal system that moved through the south-central

United States between 13 and 17 April 2018. The over-

all evolution of this storm was analyzed in detail in

FIG. 2. (a) Probabilities that a given collocated lightning imager/precipitation radar pixel is anvil or strat-

iform cloud based on the fraction of the group weighed flash extent density (GFED) that is contributed by

propagating lightning. TRMM PR cloud types are compared with LIS. (b) GPM DPR cloud types are com-

pared withGOES-16GLM collocations. Anvil/stratiform cloud probabilities increase with the GFED percent

propagating in both cases.
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Peterson et al. (2020) and it was not included in the

training dataset of GLM/DPR coincident measurements.

The first time of interest (Figs. 3a,c) is 2200 UTC

13 April 2018 when the storm was least organized,

consisting of 50 distinct ABI cold cloud (,235 K) fea-

tures. Up until this point, the GLM recorded very few

propagating flashes, with most lightning having little lateral

development (i.e., primarily vertical). However, propagat-

ing flashes were becoming increasingly common and start-

ing to dominate the GFEDs between convective cells.

These regions reported .50% anvil/stratiform cloud prob-

abilities (Fig. 3c), but they still accounted for a small fraction

of the overall thunderstorm area.

Over the next 9 h, the storm system reached its peak

overall flash rate and began maturing. It organized into

just two distinct ABI cold cloud features as it achieved

its peak overall extent, encompassing nearly 50 000 ABI

pixels (Fig. 3b). While the flash rate for the system de-

creased, flash sizes increased and propagating flash ac-

tivity reached a peak of 13%of all lightning produced by

the storm. GLM anvil/stratiform cloud probabilities

(Fig. 3d) show that these propagating flashes were con-

fined to the trailing stratiform region along the rear flank

of the storm. Anvil/stratiform cloud probabilities ex-

ceeded 80% behind the line while the forward flank

maintained probabilities below 30%, except where

propagating flashes were observed in the forward anvil

(southeastern Missouri).

The domain covered by GLM lightning activity in

Fig. 3d is significantly smaller than the ABI storm

FIG. 3. (a),(b) GOES-16 snapshots of ABI channel 14 infrared brightness temperature and (c),(d) the GLM

anvil/stratiform cloud probability gridded product during two key points in the history of a frontal system that

persisted for multiple days (13–17 Apr 2018) as it crossed the southeastern United States.
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feature shown in Fig. 3b. The stratiform region cer-

tainly extends beyond the lightning core where we have

data to make our assessments; however, the strongest

part of the storm that poses the greatest hazard to the

general public is mapped contiguously by the GLM

algorithm.

4. Summary

This study documents the construction of a lightning-

based cloud-type algorithm that differentiates between

electrified convective and anvil/stratiform clouds based

on how frequently they are illuminated by horizontally

propagating lightning flashes. Such flashes are not typi-

cal of normal convective lightning that develops pri-

marily in the vertical direction. The propagating flashes

that are generally observed in anvil/stratiform clouds

develop laterally over considerable distances (tens to

hundreds of kilometers), and this allows them to be

identified in space-based lightning imagermeasurements.

We use coincident measurements between the LIS

and PR instruments on the TRMM satellite and be-

tween GLM on the GOES-16 satellite and the DPR on

the GPM satellite to compare propagating flash fre-

quencies with radar-based cloud types. Making these

comparisons at the pixel level allows us to assess the

likelihood that a given grid point represents an electri-

fied anvil/stratiform cloud based on the percent of all

lightning illuminating it that is contributed by propa-

gating flashes.

The end result is a GLM anvil/stratiform cloud

probability gridded product (Figs. 3c,d) that can be

produced for the combined GOES-16 and GOES-17

GLM domain. These analyses can complement existing

cloud-type algorithms including a recently published

ABI algorithm that uses machine learning to identify

convective and stratiform clouds. The ABI algorithm

can classify regions that do not produce lightning, but it

is a daytime algorithm that relies on the visible channels.

As both meteorological instruments on the GOES

satellites (GLM and ABI) can be used to assess cloud

type, we propose the future creation of a merged GOES

cloud-type product that could benefit from the strengths

of each instrument and approach to provide a compre-

hensive cloud-type assessment for the operations and

research communities.
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